© 2018 *All rights reserved by liudx .:smile: *

==No body can live without H~2~0 and knowledge==

1 Tools

  • MicroSoft® VScode用来写前端代码,推荐安装插件:Dracula Offical(主题)、Beautify、Auto Rename Tag、Bracket Pair Colorizer 2、Open in Brower、Vetur
  • listary和everything一样,是一个强大的windows快速本地搜索工具
  • 天若OCR是一个OCR工具
  • Windows剪贴工具Ditto
  • ripgrep是windows下的grep命令行工具,使用方法:rg textor rg --maxdepth 1 text

2 Python

Python:第三方库:scipy,matplotlib,fabric(remote batch),requests(network)

  • pip upgrade: $Python\Scripts\easy_install.exe pip==8.1.2 ,修改国内源:新建文件C:\Users\Admin\pip\pip.ini:

    [global]
    index-url =  http://mirrors.aliyun.com/pypi/simple
    
  • Jupyter notebook:用于交互式编写python脚本,支持markdown语法,安装方法

    $pip install jupyter -i https://pypi.tuna.tsinghua.edu.cn/simple;

  • jupyter notebook 起始目录修改方法

    1. 打开anaconda SHELL,输入命令jupyter notebook --generate-config,将生成 jupyter_notebook_config.py文件
    2. 打开上一步生成的文件:C:\Users\liudx\.jupyter\jupyter_notebook_config.py,找到c.NotebookApp.notebook_dir 前面的“#”符号(#表示注释的意思),修改为起始目录
    3. 重启jupyter notebook
  • 启动jupyter notebook --no-browser,访问 http://localhost:8888

  • new python3 notebook,save as *.ipynb file

    • %magic支持魔术命令如 %run script.py=!python script.py
    • 引用系统命令eg:!echo %cd%
    • display(df) 美观打印DataFrame对象

3 博客工具Hugo(gohugo.org)

A blog system, can be integrated into github.io1, recommand Hyde | Hugo Themes (gohugo.io)( theme, if you want to suppoer letax, modify notice the head.html contains latex change for $blog\themes\hyde\layouts\partials\head.html

4 Typora ♥

Typora — a markdown editor, markdown reader. : 推荐使用主题Vue


  • 修改行宽度_@C:\Users\ADMIN\AppData\Roaming\Typora\themes\newsprint.css ==max-width: 1920px;==}

Draw graph example:

  • flow
st=>start: 开始框
op=>operation: 处理框
cond=>condition: 判断框(是或否?)
sub1=>subroutine: 子流程
io=>inputoutput: 输入输出框
e=>end: 结束框
st->op->cond
cond(yes)->io->e
cond(no)->sub1(right)->op
  • mermaid ^
graph TB
    
    subgraph *开源代码协议*
    	open_source[他人修改源码后 <br/> 是否可以闭源?]-- no -->add_with_same_lic[新增代码是否<br/>采用同样许可证?]
    	open_source-- yes -->mod_with_lic[每一个修改过的文件<br>是否都必须</br>放置版权说明?]
    	add_with_same_lic--no-->mod_need_doc[是否需要对源码的<br>修改之处,</br>提供说明文档?]    	
    	mod_need_doc--no-->LGPL(LGPL许可证)
    	mod_need_doc--yes-->Moz(Mozilla许可证)
    	add_with_same_lic--yes-->GPL(GPL许可证)
    	mod_with_lic--no-->sale_with_ownname[衍生软件的广告是否可以<br/>使用你的名字促销?]
    	sale_with_ownname--no-->BSD(BSD许可证)
    	sale_with_ownname--yes-->MIT(MIT许可证)
    	mod_with_lic--yes-->Apache(Apache许可证)
    end

    %% Notice following class def 
     classDef green fill:#9f6,stroke:#333,stroke-width:2px;
     classDef orange fill:#f96,stroke:#333,stroke-width:4px;
     class open_source,add_with_same_lic,mod_with_lic,mod_need_doc,sale_with_ownname green
     class LGPL,Moz,GPL,BSD,MIT,Apache orange
gantt
        dateFormat  YYYY-MM-DD
        title Adding GANTT diagram functionality to mermaid
	section A section
        Completed task            :done,    des1, 2014-01-06,2014-01-08
        Active task               :active,  des2, 2014-01-09, 3d
        Future task               :         des3, after des2, 5d
        Future task2              :         des4, after des2, 7d
	section Critical tasks
        Completed task in the critical line :crit, done, 2014-01-06,24h
        Implement parser and jison          :crit, done, after des1, 2d
        Create tests for parser             :crit, active, 3d
        Future task in critical line        :crit, 5d
        Create tests for renderer           :after des3,2d
        Add to mermaid                      :1d

5 $\LaTeX$ Code

1. 二次方程求根公式:

$$ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} $$

2. 三角和公式:

$$ \sin(\alpha+\beta) = \sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta) $$

​ 简单证明如下:

​ 平面上两个单位向量,与x轴正向夹角分别为$x$和$y$,则这两个向量分别为$\vec{\alpha}(\cos x,\sin x),\quad\vec{\beta}(\cos y,\sin y)$。则这两个向量的点积为$\cos x\cos y+\sin x\sin y$,而点积又可以表示为$|\vec{\alpha}|\cdot|\vec{\beta}|\cdot\cos|x-y|=\cos(x-y)$,于是我们得到了以下公式:

$$ \cos(x-y)=\cos x\cos y+\sin x\sin y \quad\quad (1) $$ ​ 将(1)中的$\boldsymbol{y}$换成$\boldsymbol{-y}$得到:

$$ \cos(x+y)=\cos x\cos y-\sin x\sin y \quad\quad(2) $$ ​ 将(1)中的$\boldsymbol{x}$用$\frac{\pi}{2} -x$代入,得到:

$$ \sin(x+y)=\sin x\cos y+\sin y\cos x\quad\quad(3) $$ ​ 将(3)中的$\boldsymbol{y}$用$\boldsymbol{-y}$代入,得到:

$$ \sin(x-y)=\cos y\sin x-\cos x\sin y\quad\quad(4) $$

3. 欧拉公式\棣莫弗公式:

$$ z = r\cdot e^{2\pi i},\quad e^{ix}=cosx+isinx \to e^{i\pi}+1=0\\ de\space Moivre’s\space Formula: (cos(x)+isin(x))^n=cos(nx)+isin(nx) = e^{i(nx)},x \in C,n \in R $$

4. 常用公式:

$$ 复数域C;实数域R;有理数域Q \ 自然常数:e =\lim_{x\to \infty}(1+1/x)^x,e^x =1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots\\ 欧拉定理: a^{\psi(n)}\equiv 1\space mod(n),(\psi(n)欧拉函数为小于n的素数个数);特别有a^{p-1}\equiv 1\space mod(p),当p为素数,a>2\\ 正太分布(高斯分布,probability\space density\space function):p(x|\mu,\sigma^2)=\frac{1}{\sqrt{2\pi}\sigma}e^{\dfrac{-(x-\mu)^2}{2\sigma^2}}\\ 概率分布(或称CDF:累积分布,cumulative\space distribution\space function):F_X(a) = P(x\le a)\\ 傅里叶变换:\hat{f}(\xi)=\int_{-\infty}^{\infty}{f(x)e^{-2\pi ix \xi}}dx,\xi \in R\\ fourier逆变换:{f}(x)=\int_{-\infty}^{\infty}{\hat{f}(\xi)e^{2\pi i\xi x}}d\xi, x \in R\\ 离散傅里叶变换(DFT):X_k=\sum_{n=0}^{N-1}x_ne^{-i2\pi k\dfrac{n}{N}},k=0,1\dots,N-1,x_n \in C.\\ 离散余弦变换(DCT-II):f_m=\sum_{k=0}^{n-1}x_kcos\Big[\dfrac{\pi}{n}m(k+\frac{1}{2})\Big],k=0,1\dots,N-1,x_n \in C.\\ Gamma function:\Gamma (x)=\int_{0}^{\infty}t^{x-1}e^{-t}dt = (x-1)!\\ Beta Function:B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\int_{0}^{1}{t^x(1-t)^y}dt $$

5. 积分\求导More Basical Equation

$$ Dirak\space function:\delta(x)=\begin{cases} 0,x=0 \\ \infty,x \neq 0\end{cases} \quad s.t.\int_{-\infty}^{\infty}{\delta(x)}dx = 1 \\ Hooke\space theroy:F=-kx=\dfrac {dx^2}{dt^2} $$

6. fibonacci若干性质

$$ f(n)=f(n+1)-f(n-1)\\ f(n)=[f(n+1)+f(n-2)]/2\\ \sum_{i=1}^{n}{f^2(i)}=f(n)\cdot f(n-1)\\ \lim_{x\to\infty}\frac{f(n)}{f(n+1)}=\frac{1-\sqrt{5}}{2}\approx 0.618 $$

7.MATRIX

​ 假设单位向量$\overrightarrow{u}坐标为(\sin x,\cos x)$,旋转$\theta$后变为向量$\overrightarrow{u’}坐标为(\sin y,\cos y)$,由内积和外积定义可得:

$$ \overrightarrow{u}\cdot\overrightarrow{u’} = \cos \theta = \cos x \cos y + \sin x \sin y \quad\quad(5)\\ \overrightarrow{u}\times\overrightarrow{u’}=\sin \theta = \begin{vmatrix} i & j & k\\ \cos x & \sin x &0\\ \cos y & \sin y &0\\ \end{vmatrix}= \cos x \sin y - \sin x \cos y \quad\quad(6) $$ ​ 另有

$$ \sin^2 \theta + \cos^2 \theta = 1\quad\quad(7) $$

​ 由$(5)\cdot \sin x +(6)\cdot \cos x解得\sin y$;由$(5)\cdot \cos x -(6)\cdot \sin x解得\cos y$: $$ \begin{cases} \sin y = \sin x\cdot\cos\theta+ \cos x\cdot \sin \theta\\ \cos y = \cos x\cdot\cos\theta-\sin x\cdot\sin\theta \end{cases} $$ ​ 即2维旋转矩阵(S2):

$$ \begin{pmatrix} \cos y\\ \sin y \end{pmatrix}=\begin{vmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\\ \end{vmatrix}\cdot \begin{pmatrix} \cos x\\ \sin x \end{pmatrix}\quad(8) $$ ​ 同理可得三维旋转矩阵(S3)为:

$$ R_x(\omega)=\begin{bmatrix} 1 & 0 & 0\\ 0 & cos\omega & -sin\omega\\ 0 & sin\omega & cos\omega\\ \end{bmatrix}, R_y(\phi)=\begin{bmatrix} cos\phi &0 & -sin\phi\\ 0 & 1 & 0 \\ sin\phi &0 & cos\phi\\ \end{bmatrix}, R_z(\kappa)=\begin{bmatrix} cos\kappa & -sin\kappa &0\\ sin\kappa & cos\kappa &0\\ 0 &0 &1 \\ \end{bmatrix}\\ R=R_z(\kappa)\cdot R_y(\phi)\cdot R_x(\omega) = \begin{bmatrix} cosϕ⋅cosκ& −cosϕ⋅sinκ&sinϕ\\ cosω⋅sinκ+sinω⋅sinϕ⋅cosκ & cosω⋅cosκ−sinω⋅sinϕ⋅sinκ &−sinω⋅cosϕ \\ sinω⋅sinκ−cosω⋅sinϕ⋅cosκ & sinω⋅cosκ+cosω⋅sinϕcdotsinκ &cosω⋅cosϕ\end{bmatrix} $$

8. Riemann Function (Zeta)

$$ \zeta(s) = \sum_0^\infty \frac{1}{n^s}, s \in R\space and\space Real(s) > 1\\ specially,\zeta(2) = \frac{\pi^2}{6} $$

9.系统可靠性(Realibality)

$$ 可靠度R=\begin{cases}R=\prod_i^nR_i,串联系统\\R=\prod_i^n(1-R_i),并联系统\end{cases} $$ 失效率$\lambda$与可靠度R关系为: $$ R=e^{-\lambda t} $$

10. Amdahl定律

$$ F = \frac{1}{1-F_e + F_e/S},其中Fe为子系统占比,S为加速倍数,计算整个系统提升百分比 $$

其他待办事项:


  1. https://zhuanlan.zhihu.com/p/26625249 ↩︎